Simple Methods for Oxidation of o-Allylphenols to Chrom-3-enes

By GIULIANA CARDILLO,* MARIO ORENA, GIANNI PORZI, and SERGIO SANDRI (Istituto Chimico 'G. Ciamician,' Università di Bologna, Via Selmi 2, 40126 Bologna, Italy)

Summary The reaction of o-allylphenols (1) with potassium dichromate dissolved in benzene using Adogen 464, a commercial mixture of methyl-trialkyl-(C_8-C_{10})-ammonium chloride, or with 2,3-dichloro-5,6-dicyanobenzo-quinone (DDQ) in ether affords the corresponding chrom-3-enes (3) in good yields.

SYNTHESIS of chrom-3-enes (3) through cyclodehydrogenation of 2-(3,3-dialkylallyl)phenols (1) with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) or chloranil has been extensively studied and has wide application.¹ Hitherto the more usual oxidizing reagents, for instance Cr^{vI} salts, have not been used in the preparation of chrom-3-enes. We now report that some Cr^{vI} derivatives are effective in oxidizing *o*-allylphenols to chrom-3-enes. Chromic acid supported on an anionic exchange resin, a reagent prepared in our laboratory to oxidize alcohols and allylic halides to carbonyl compounds,² reacts with *o*-allylphenols in refluxing benzene to give chrom-3-enes in 50% yield, the residual starting material being partially adsorbed on the polymeric support.

Recently a new method of dissolving the dichromate anion $(Cr_2O_7^{2-})$ in many organic solvents, utilizing Adogen 464, a commercial mixture of methyl-trialkyl-(C₈-C₁₀)ammonium chlorides has been reported.³ Potassium dichromate readily dissolves in benzene using Adogen 464 (with a 2:1 ammonium salt to dichromate ratio). By adding a benzene solution of methyl-trialkyl-ammonium dichromate (1 equiv.) to a solution of allylphenol (1 equiv.) in refluxing benzene, the oxidation is complete after 1 h. The mixture is then diluted with hexane and the organic layer is washed with 20% aqueous $Na_2S_2O_5$. After removal of the solvent and silica gel chromatography, the chrom-3ene is obtained in good yield, as reported in Table 1. Good yields are also observed for the oxidation of 2-(3methylbut-2-enyl)-5-methoxyphenol, which gives, in 83% yield, the corresponding 2,2-dimethyl-7-methoxychrom-3ene, the well known precocene I, an inhibitor of juvenile hormone (JH) biosynthesis in cockroach corpora allata.⁴

TABLE 1. Oxidation of o-allylphenols (1) with $Cr_2O_7^{2-}$ to chrom-3-enes (3)

x	$\frac{\text{Phenol } (1)}{\mathrm{R}^{1}}$	R²	% Yield of (3) ^a
5-MeO	Me	Me	83
4-Me	Me	Me	78
3-Pr ⁱ , 6-Me	Me	Me	76
4-Me	Me	[CH,],CH=CMe,	77
4-Me	н	Ph	45

^a Yields refer to pure isolated products.

The oxidation of alcohols by chromic acid is believed to take place by an initial formation of a chromate ester, followed by breakdown of the ester.⁵ Oxidation of *o*-allylphenols to chrom-3-enes is assumed to proceed through a similar intermediate (4), where Cr^{VI} is capable of effecting

a nucleofuge departure yielding an o-quinoneallide (2). The quinoneallides (2) are recognized as intermediates⁶ also in DDQ oxidation. Because electrocyclic ring closure readily occurs, any synthesis of o-quinoneallides is effectively a synthesis of chrom-3-enes. As reported in the literature,¹ however, the yields from DDQ oxidation of allylphenols to chrom-3-enes in refluxing benzene rarely exceed 50%. We have obtained improved yields after modifying the experimental conditions. Thus, if DDQ (1.1 equiv.) in ethyl ether is added dropwise to a stirred solution of the o-allylphenol (1 equiv.) in ether at room temperature, a rapid change of colour is observed. After stirring the solution for 2 h, the organic layer is evaporated and the residue purified by chromatography on silica gel to give chrom-3-enes in good yields. For example, with the more sensitive cinnamylphenols, flav-3-enes are obtained in yields ranging from 80 to 90%, as shown in Table 2.

TABLE 2.	Oxidation of o -allylphenols (1) with DDQ t	o
	chrom-3-enes (3)	

Phenol (1)			% Yield	
х	\mathbb{R}^{1}	\mathbf{R}^2	of (3) ^a	
4-MeO	Me	Me	85	
4-Me	Me	Me	90	
4-Et	н	\mathbf{Ph}	90	
4-MeO	н	$\mathbf{P}\mathbf{h}$	82	

^a Yields refer to pure isolated products.

(Received, 30th May 1979; Com. 564.)

¹ L. Merlini, 'Advances in the chemistry of chrom-3-enes,' in 'Advances in Heterocyclic Chemistry,' Vol. 18, Academic Press, New York, 1975, and references cited therein; E. E. Schweizer and D. Needer-Nycz in 'Chromenes, Chromanones and Chromones,' ed. G. P. Ellis, Wiley, New York, 1977, Ch. II.

²G. Cainelli, G. Cardillo, M. Orena, and S. Sandri, J. Amer. Chem. Soc., 1976, 98, 6737; G. Cardillo, M. Orena, and S. Sandri, Tetrahedron Letters, 1976, 3985.

³ R. O. Hutchins, N. R. Natale, W. J. Cook, and J. Ohr, Tetrahedron Letters, 1977, 4167.

⁴ W. S. Bowers, T. Ohta, J. S. Clare, and P. A. Morsella, Science, 1976, 193, 542; G. E. Pratt and W. S. Bowers, Nature, 1977, **265**, 548.

⁶ H. O. House, 'Modern Synthetic Reactions,' Benjamin, Menlo Park, California, 1972, p. 261. ⁶ W. D. Ollis and I. O. Sutherland, 'Recent Developments in the Chemistry of Natural Phenolic Substances,' Pergamon, Oxford, 1961, p. 84; L. Jurd, Tetrahedron, 1977, 33, 163; G. Cardillo, R. Cricchio, and L. Merlini, ibid., 1968, 24, 4825; Tetrahedron Letters, 1969, 907.